There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(ln(x) + xinx)}^{-2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{(ln(x) + inx^{2})^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{(ln(x) + inx^{2})^{2}}\right)}{dx}\\=&(\frac{-2(\frac{1}{(x)} + in*2x)}{(ln(x) + inx^{2})^{3}})\\=&\frac{-2}{(ln(x) + inx^{2})^{3}x} - \frac{4inx}{(ln(x) + inx^{2})^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !