There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ arcsin(ln(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arcsin(ln(x))\right)}{dx}\\=&(\frac{(\frac{1}{(x)})}{((1 - (ln(x))^{2})^{\frac{1}{2}})})\\=&\frac{1}{(-ln^{2}(x) + 1)^{\frac{1}{2}}x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{(-ln^{2}(x) + 1)^{\frac{1}{2}}x}\right)}{dx}\\=&\frac{(\frac{\frac{-1}{2}(\frac{-2ln(x)}{(x)} + 0)}{(-ln^{2}(x) + 1)^{\frac{3}{2}}})}{x} + \frac{-1}{(-ln^{2}(x) + 1)^{\frac{1}{2}}x^{2}}\\=&\frac{ln(x)}{(-ln^{2}(x) + 1)^{\frac{3}{2}}x^{2}} - \frac{1}{(-ln^{2}(x) + 1)^{\frac{1}{2}}x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !