There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{{({x}^{3} - {x}^{2} - x + 1)}^{1}}{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{3}x^{3} - \frac{1}{3}x^{2} - \frac{1}{3}x + \frac{1}{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{3}x^{3} - \frac{1}{3}x^{2} - \frac{1}{3}x + \frac{1}{3}\right)}{dx}\\=&\frac{1}{3}*3x^{2} - \frac{1}{3}*2x - \frac{1}{3} + 0\\=&x^{2} - \frac{2x}{3} - \frac{1}{3}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( x^{2} - \frac{2x}{3} - \frac{1}{3}\right)}{dx}\\=&2x - \frac{2}{3} + 0\\=&2x - \frac{2}{3}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !