There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {x}^{4}ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{4}ln(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{4}ln(x)\right)}{dx}\\=&4x^{3}ln(x) + \frac{x^{4}}{(x)}\\=&4x^{3}ln(x) + x^{3}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4x^{3}ln(x) + x^{3}\right)}{dx}\\=&4*3x^{2}ln(x) + \frac{4x^{3}}{(x)} + 3x^{2}\\=&12x^{2}ln(x) + 7x^{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !