There are 1 questions in this calculation: for each question, the 1 derivative of a is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({N}^{2} - \frac{b{N}^{2}}{g} + \frac{aN*0}{t})(a - g)}{(g(a - b))}\ with\ respect\ to\ a:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{N^{2}a}{(ga - bg)} - \frac{N^{2}ba}{(ga - bg)g} + \frac{N^{2}b}{(ga - bg)} - \frac{N^{2}g}{(ga - bg)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{N^{2}a}{(ga - bg)} - \frac{N^{2}ba}{(ga - bg)g} + \frac{N^{2}b}{(ga - bg)} - \frac{N^{2}g}{(ga - bg)}\right)}{da}\\=&(\frac{-(g + 0)}{(ga - bg)^{2}})N^{2}a + \frac{N^{2}}{(ga - bg)} - \frac{(\frac{-(g + 0)}{(ga - bg)^{2}})N^{2}ba}{g} - \frac{N^{2}b}{(ga - bg)g} + (\frac{-(g + 0)}{(ga - bg)^{2}})N^{2}b + 0 - (\frac{-(g + 0)}{(ga - bg)^{2}})N^{2}g + 0\\=&\frac{-N^{2}ga}{(ga - bg)^{2}} - \frac{N^{2}b}{(ga - bg)g} + \frac{N^{2}ba}{(ga - bg)^{2}} - \frac{N^{2}bg}{(ga - bg)^{2}} + \frac{N^{2}g^{2}}{(ga - bg)^{2}} + \frac{N^{2}}{(ga - bg)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !