Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of L is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ A{L}^{a}{K}^{b}\ with\ respect\ to\ L:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( A{L}^{a}{K}^{b}\right)}{dL}\\=&A({L}^{a}((0)ln(L) + \frac{(a)(1)}{(L)})){K}^{b} + A{L}^{a}({K}^{b}((0)ln(K) + \frac{(b)(0)}{(K)}))\\=&\frac{Aa{L}^{a}{K}^{b}}{L}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return