There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {{{{{{{{x}^{2}}^{x}}^{x}}^{2}}^{x}}^{x}}^{x}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {{{{{x^{2}}^{x}}^{(2x)}}^{x}}^{x}}^{(2x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {{{{{x^{2}}^{x}}^{(2x)}}^{x}}^{x}}^{(2x)}\right)}{dx}\\=&({{{{{x^{2}}^{x}}^{(2x)}}^{x}}^{x}}^{(2x)}((2)ln({{{{x^{2}}^{x}}^{(2x)}}^{x}}^{x}) + \frac{(2x)(({{{{x^{2}}^{x}}^{(2x)}}^{x}}^{x}((1)ln({{{x^{2}}^{x}}^{(2x)}}^{x}) + \frac{(x)(({{{x^{2}}^{x}}^{(2x)}}^{x}((1)ln({{x^{2}}^{x}}^{(2x)}) + \frac{(x)(({{x^{2}}^{x}}^{(2x)}((2)ln({x^{2}}^{x}) + \frac{(2x)(({x^{2}}^{x}((1)ln(x^{2}) + \frac{(x)(2x)}{(x^{2})})))}{({x^{2}}^{x})})))}{({{x^{2}}^{x}}^{(2x)})})))}{({{{x^{2}}^{x}}^{(2x)}}^{x})})))}{({{{{x^{2}}^{x}}^{(2x)}}^{x}}^{x})}))\\=&2{{{{{x^{2}}^{x}}^{(2x)}}^{x}}^{x}}^{(2x)}ln({{{{x^{2}}^{x}}^{(2x)}}^{x}}^{x}) + 2x{{{{{x^{2}}^{x}}^{(2x)}}^{x}}^{x}}^{(2x)}ln({{{x^{2}}^{x}}^{(2x)}}^{x}) + 2x^{2}{{{{{x^{2}}^{x}}^{(2x)}}^{x}}^{x}}^{(2x)}ln({{x^{2}}^{x}}^{(2x)}) + 4x^{3}{{{{{x^{2}}^{x}}^{(2x)}}^{x}}^{x}}^{(2x)}ln({x^{2}}^{x}) + 4x^{4}{{{{{x^{2}}^{x}}^{(2x)}}^{x}}^{x}}^{(2x)}ln(x^{2}) + 8x^{4}{{{{{x^{2}}^{x}}^{(2x)}}^{x}}^{x}}^{(2x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !