There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ a{(x - 5)}^{2} + 6ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ax^{2} - 10ax + 25a + 6ln(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ax^{2} - 10ax + 25a + 6ln(x)\right)}{dx}\\=&a*2x - 10a + 0 + \frac{6}{(x)}\\=&2ax - 10a + \frac{6}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !