Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 6 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 6th\ derivative\ of\ function\ \frac{{x}^{7}cos(x)cos(x)prt(1 + {x}^{8})}{s}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{prtx^{7}cos^{2}(x)}{s} + \frac{prtx^{15}cos^{2}(x)}{s}\\\\ &\color{blue}{The\ 6th\ derivative\ of\ function:} \\=&\frac{-32prtx^{7}cos^{2}(x)}{s} - \frac{1344prtx^{6}sin(x)cos(x)}{s} + \frac{5040prtx^{5}cos^{2}(x)}{s} + \frac{33600prtx^{4}sin(x)cos(x)}{s} - \frac{30240prtx^{2}sin(x)cos(x)}{s} - \frac{25200prtx^{3}cos^{2}(x)}{s} - \frac{2880prtx^{14}sin(x)cos(x)}{s} + \frac{25200prtx^{13}cos^{2}(x)}{s} + \frac{436800prtx^{12}sin(x)cos(x)}{s} - \frac{32prtx^{15}cos^{2}(x)}{s} - \frac{4324320prtx^{10}sin(x)cos(x)}{s} - \frac{982800prtx^{11}cos^{2}(x)}{s} - \frac{5040prtx^{5}sin^{2}(x)}{s} + \frac{32prtx^{7}sin^{2}(x)}{s} - \frac{25200prtx^{13}sin^{2}(x)}{s} + \frac{32prtx^{15}sin^{2}(x)}{s} + \frac{25200prtx^{3}sin^{2}(x)}{s} + \frac{982800prtx^{11}sin^{2}(x)}{s} + \frac{3603600prtx^{9}cos^{2}(x)}{s} + \frac{5040prtxcos^{2}(x)}{s}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return