Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of t is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{sin(t)}{t}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sin(t)}{t}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sin(t)}{t}\right)}{dt}\\=&\frac{-sin(t)}{t^{2}} + \frac{cos(t)}{t}\\=&\frac{-sin(t)}{t^{2}} + \frac{cos(t)}{t}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-sin(t)}{t^{2}} + \frac{cos(t)}{t}\right)}{dt}\\=&\frac{--2sin(t)}{t^{3}} - \frac{cos(t)}{t^{2}} + \frac{-cos(t)}{t^{2}} + \frac{-sin(t)}{t}\\=&\frac{2sin(t)}{t^{3}} - \frac{2cos(t)}{t^{2}} - \frac{sin(t)}{t}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return