Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ xarccos(1 - \frac{7}{x}) - sqrt(7(2x - 7)) - 10\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xarccos(\frac{-7}{x} + 1) - sqrt(14x - 49) - 10\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xarccos(\frac{-7}{x} + 1) - sqrt(14x - 49) - 10\right)}{dx}\\=&arccos(\frac{-7}{x} + 1) + x(\frac{-(\frac{-7*-1}{x^{2}} + 0)}{((1 - (\frac{-7}{x} + 1)^{2})^{\frac{1}{2}})}) - \frac{(14 + 0)*\frac{1}{2}}{(14x - 49)^{\frac{1}{2}}} + 0\\=&arccos(\frac{-7}{x} + 1) - \frac{7}{(\frac{-49}{x^{2}} + \frac{14}{x})^{\frac{1}{2}}x} - \frac{7}{(14x - 49)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return