There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{2} + z)}{(x + z)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(x + z)} + \frac{z}{(x + z)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(x + z)} + \frac{z}{(x + z)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x + z)^{2}})x^{2} + \frac{2x}{(x + z)} + (\frac{-(1 + 0)}{(x + z)^{2}})z + 0\\=&\frac{-x^{2}}{(x + z)^{2}} + \frac{2x}{(x + z)} - \frac{z}{(x + z)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !