Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (cos(sin(x)) - cos(sin(tan(x)))){\frac{1}{x}}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{cos(sin(x))}{x^{4}} - \frac{cos(sin(tan(x)))}{x^{4}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{cos(sin(x))}{x^{4}} - \frac{cos(sin(tan(x)))}{x^{4}}\right)}{dx}\\=&\frac{-4cos(sin(x))}{x^{5}} + \frac{-sin(sin(x))cos(x)}{x^{4}} - \frac{-4cos(sin(tan(x)))}{x^{5}} - \frac{-sin(sin(tan(x)))cos(tan(x))sec^{2}(x)(1)}{x^{4}}\\=&\frac{-4cos(sin(x))}{x^{5}} + \frac{sin(sin(tan(x)))cos(tan(x))sec^{2}(x)}{x^{4}} + \frac{4cos(sin(tan(x)))}{x^{5}} - \frac{sin(sin(x))cos(x)}{x^{4}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return