There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 485.7(13.64 - x)ln(1 - \frac{x}{13.64}) + 485.7x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 6624.948ln(-0.0733137829912x + 1) - 485.7xln(-0.0733137829912x + 1) + 485.7x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 6624.948ln(-0.0733137829912x + 1) - 485.7xln(-0.0733137829912x + 1) + 485.7x\right)}{dx}\\=&\frac{6624.948(-0.0733137829912 + 0)}{(-0.0733137829912x + 1)} - 485.7ln(-0.0733137829912x + 1) - \frac{485.7x(-0.0733137829912 + 0)}{(-0.0733137829912x + 1)} + 485.7\\=& - \frac{-35.608504398827x}{(-0.0733137829912x + 1)} - 485.7ln(-0.0733137829912x + 1) - \frac{485.7}{(-0.0733137829912x + 1)} + 485.7\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !