There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 359(11.96 - x)ln(1 - \frac{x}{11.96}) + 359x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4293.64ln(-0.0836120401338x + 1) - 359xln(-0.0836120401338x + 1) + 359x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4293.64ln(-0.0836120401338x + 1) - 359xln(-0.0836120401338x + 1) + 359x\right)}{dx}\\=&\frac{4293.64(-0.0836120401338 + 0)}{(-0.0836120401338x + 1)} - 359ln(-0.0836120401338x + 1) - \frac{359x(-0.0836120401338 + 0)}{(-0.0836120401338x + 1)} + 359\\=& - \frac{-30.016722408027x}{(-0.0836120401338x + 1)} - 359ln(-0.0836120401338x + 1) - \frac{359}{(-0.0836120401338x + 1)} + 359\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !