Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of t is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {t}^{(x - 1)}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {t}^{(x - 1)}\right)}{dt}\\=&({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))\\=&\frac{x{t}^{(x - 1)}}{t} - \frac{{t}^{(x - 1)}}{t}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{x{t}^{(x - 1)}}{t} - \frac{{t}^{(x - 1)}}{t}\right)}{dt}\\=&\frac{x*-{t}^{(x - 1)}}{t^{2}} + \frac{x({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{t} - \frac{-{t}^{(x - 1)}}{t^{2}} - \frac{({t}^{(x - 1)}((0 + 0)ln(t) + \frac{(x - 1)(1)}{(t)}))}{t}\\=&\frac{-3x{t}^{(x - 1)}}{t^{2}} + \frac{x^{2}{t}^{(x - 1)}}{t^{2}} + \frac{2{t}^{(x - 1)}}{t^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return