There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 4{e}^{(x - 2)}(x - 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4x{e}^{(x - 2)} - 4{e}^{(x - 2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4x{e}^{(x - 2)} - 4{e}^{(x - 2)}\right)}{dx}\\=&4{e}^{(x - 2)} + 4x({e}^{(x - 2)}((1 + 0)ln(e) + \frac{(x - 2)(0)}{(e)})) - 4({e}^{(x - 2)}((1 + 0)ln(e) + \frac{(x - 2)(0)}{(e)}))\\=&4x{e}^{(x - 2)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !