There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{e}^{ln(-x)}}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}{e}^{ln(-x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}{e}^{ln(-x)}\right)}{dx}\\=&\frac{1}{2}({e}^{ln(-x)}((\frac{-1}{(-x)})ln(e) + \frac{(ln(-x))(0)}{(e)}))\\=&\frac{{e}^{ln(-x)}}{2x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !