There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{m{x}^{n}}{({k}^{n} + {x}^{n})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{m{x}^{n}}{({k}^{n} + {x}^{n})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{m{x}^{n}}{({k}^{n} + {x}^{n})}\right)}{dx}\\=&(\frac{-(({k}^{n}((0)ln(k) + \frac{(n)(0)}{(k)})) + ({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)})))}{({k}^{n} + {x}^{n})^{2}})m{x}^{n} + \frac{m({x}^{n}((0)ln(x) + \frac{(n)(1)}{(x)}))}{({k}^{n} + {x}^{n})}\\=&\frac{-mn{x}^{(2n)}}{({k}^{n} + {x}^{n})^{2}x} + \frac{mn{x}^{n}}{({k}^{n} + {x}^{n})x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !