There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{mx}{(n + x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{mx}{(n + x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{mx}{(n + x)}\right)}{dx}\\=&(\frac{-(0 + 1)}{(n + x)^{2}})mx + \frac{m}{(n + x)}\\=&\frac{-mx}{(n + x)^{2}} + \frac{m}{(n + x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !