Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ \frac{2xx}{(3xx - 4x + 2)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2x^{2}}{(3x^{2} - 4x + 2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2x^{2}}{(3x^{2} - 4x + 2)}\right)}{dx}\\=&2(\frac{-(3*2x - 4 + 0)}{(3x^{2} - 4x + 2)^{2}})x^{2} + \frac{2*2x}{(3x^{2} - 4x + 2)}\\=&\frac{-12x^{3}}{(3x^{2} - 4x + 2)^{2}} + \frac{8x^{2}}{(3x^{2} - 4x + 2)^{2}} + \frac{4x}{(3x^{2} - 4x + 2)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-12x^{3}}{(3x^{2} - 4x + 2)^{2}} + \frac{8x^{2}}{(3x^{2} - 4x + 2)^{2}} + \frac{4x}{(3x^{2} - 4x + 2)}\right)}{dx}\\=&-12(\frac{-2(3*2x - 4 + 0)}{(3x^{2} - 4x + 2)^{3}})x^{3} - \frac{12*3x^{2}}{(3x^{2} - 4x + 2)^{2}} + 8(\frac{-2(3*2x - 4 + 0)}{(3x^{2} - 4x + 2)^{3}})x^{2} + \frac{8*2x}{(3x^{2} - 4x + 2)^{2}} + 4(\frac{-(3*2x - 4 + 0)}{(3x^{2} - 4x + 2)^{2}})x + \frac{4}{(3x^{2} - 4x + 2)}\\=&\frac{144x^{4}}{(3x^{2} - 4x + 2)^{3}} - \frac{192x^{3}}{(3x^{2} - 4x + 2)^{3}} - \frac{60x^{2}}{(3x^{2} - 4x + 2)^{2}} + \frac{64x^{2}}{(3x^{2} - 4x + 2)^{3}} + \frac{32x}{(3x^{2} - 4x + 2)^{2}} + \frac{4}{(3x^{2} - 4x + 2)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{144x^{4}}{(3x^{2} - 4x + 2)^{3}} - \frac{192x^{3}}{(3x^{2} - 4x + 2)^{3}} - \frac{60x^{2}}{(3x^{2} - 4x + 2)^{2}} + \frac{64x^{2}}{(3x^{2} - 4x + 2)^{3}} + \frac{32x}{(3x^{2} - 4x + 2)^{2}} + \frac{4}{(3x^{2} - 4x + 2)}\right)}{dx}\\=&144(\frac{-3(3*2x - 4 + 0)}{(3x^{2} - 4x + 2)^{4}})x^{4} + \frac{144*4x^{3}}{(3x^{2} - 4x + 2)^{3}} - 192(\frac{-3(3*2x - 4 + 0)}{(3x^{2} - 4x + 2)^{4}})x^{3} - \frac{192*3x^{2}}{(3x^{2} - 4x + 2)^{3}} - 60(\frac{-2(3*2x - 4 + 0)}{(3x^{2} - 4x + 2)^{3}})x^{2} - \frac{60*2x}{(3x^{2} - 4x + 2)^{2}} + 64(\frac{-3(3*2x - 4 + 0)}{(3x^{2} - 4x + 2)^{4}})x^{2} + \frac{64*2x}{(3x^{2} - 4x + 2)^{3}} + 32(\frac{-2(3*2x - 4 + 0)}{(3x^{2} - 4x + 2)^{3}})x + \frac{32}{(3x^{2} - 4x + 2)^{2}} + 4(\frac{-(3*2x - 4 + 0)}{(3x^{2} - 4x + 2)^{2}})\\=&\frac{-2592x^{5}}{(3x^{2} - 4x + 2)^{4}} + \frac{5184x^{4}}{(3x^{2} - 4x + 2)^{4}} + \frac{1296x^{3}}{(3x^{2} - 4x + 2)^{3}} - \frac{3456x^{3}}{(3x^{2} - 4x + 2)^{4}} - \frac{1440x^{2}}{(3x^{2} - 4x + 2)^{3}} - \frac{144x}{(3x^{2} - 4x + 2)^{2}} + \frac{768x^{2}}{(3x^{2} - 4x + 2)^{4}} + \frac{384x}{(3x^{2} - 4x + 2)^{3}} + \frac{48}{(3x^{2} - 4x + 2)^{2}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2592x^{5}}{(3x^{2} - 4x + 2)^{4}} + \frac{5184x^{4}}{(3x^{2} - 4x + 2)^{4}} + \frac{1296x^{3}}{(3x^{2} - 4x + 2)^{3}} - \frac{3456x^{3}}{(3x^{2} - 4x + 2)^{4}} - \frac{1440x^{2}}{(3x^{2} - 4x + 2)^{3}} - \frac{144x}{(3x^{2} - 4x + 2)^{2}} + \frac{768x^{2}}{(3x^{2} - 4x + 2)^{4}} + \frac{384x}{(3x^{2} - 4x + 2)^{3}} + \frac{48}{(3x^{2} - 4x + 2)^{2}}\right)}{dx}\\=&-2592(\frac{-4(3*2x - 4 + 0)}{(3x^{2} - 4x + 2)^{5}})x^{5} - \frac{2592*5x^{4}}{(3x^{2} - 4x + 2)^{4}} + 5184(\frac{-4(3*2x - 4 + 0)}{(3x^{2} - 4x + 2)^{5}})x^{4} + \frac{5184*4x^{3}}{(3x^{2} - 4x + 2)^{4}} + 1296(\frac{-3(3*2x - 4 + 0)}{(3x^{2} - 4x + 2)^{4}})x^{3} + \frac{1296*3x^{2}}{(3x^{2} - 4x + 2)^{3}} - 3456(\frac{-4(3*2x - 4 + 0)}{(3x^{2} - 4x + 2)^{5}})x^{3} - \frac{3456*3x^{2}}{(3x^{2} - 4x + 2)^{4}} - 1440(\frac{-3(3*2x - 4 + 0)}{(3x^{2} - 4x + 2)^{4}})x^{2} - \frac{1440*2x}{(3x^{2} - 4x + 2)^{3}} - 144(\frac{-2(3*2x - 4 + 0)}{(3x^{2} - 4x + 2)^{3}})x - \frac{144}{(3x^{2} - 4x + 2)^{2}} + 768(\frac{-4(3*2x - 4 + 0)}{(3x^{2} - 4x + 2)^{5}})x^{2} + \frac{768*2x}{(3x^{2} - 4x + 2)^{4}} + 384(\frac{-3(3*2x - 4 + 0)}{(3x^{2} - 4x + 2)^{4}})x + \frac{384}{(3x^{2} - 4x + 2)^{3}} + 48(\frac{-2(3*2x - 4 + 0)}{(3x^{2} - 4x + 2)^{3}})\\=&\frac{62208x^{6}}{(3x^{2} - 4x + 2)^{5}} - \frac{165888x^{5}}{(3x^{2} - 4x + 2)^{5}} - \frac{36288x^{4}}{(3x^{2} - 4x + 2)^{4}} + \frac{165888x^{4}}{(3x^{2} - 4x + 2)^{5}} - \frac{73728x^{3}}{(3x^{2} - 4x + 2)^{5}} + \frac{62208x^{3}}{(3x^{2} - 4x + 2)^{4}} + \frac{5616x^{2}}{(3x^{2} - 4x + 2)^{3}} - \frac{34560x^{2}}{(3x^{2} - 4x + 2)^{4}} - \frac{4608x}{(3x^{2} - 4x + 2)^{3}} + \frac{6144x}{(3x^{2} - 4x + 2)^{4}} + \frac{12288x^{2}}{(3x^{2} - 4x + 2)^{5}} + \frac{768}{(3x^{2} - 4x + 2)^{3}} - \frac{144}{(3x^{2} - 4x + 2)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return