There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 12(\frac{2}{5}{x}^{(\frac{-1}{2})} + \frac{3}{5}{z}^{(\frac{-1}{2})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{24}{5}}{x^{\frac{1}{2}}} + \frac{\frac{36}{5}}{z^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{24}{5}}{x^{\frac{1}{2}}} + \frac{\frac{36}{5}}{z^{\frac{1}{2}}}\right)}{dx}\\=&\frac{\frac{24}{5}*\frac{-1}{2}}{x^{\frac{3}{2}}} + 0\\=&\frac{-12}{5x^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !