There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (2.5 - 30x){e}^{(-0.32x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2.5{e}^{(-0.32x)} - 30x{e}^{(-0.32x)}\right)}{dx}\\=&2.5({e}^{(-0.32x)}((-0.32)ln(e) + \frac{(-0.32x)(0)}{(e)})) - 30{e}^{(-0.32x)} - 30x({e}^{(-0.32x)}((-0.32)ln(e) + \frac{(-0.32x)(0)}{(e)}))\\=&-0.8{e}^{(-0.32x)} - 30{e}^{(-0.32x)} + 9.6x{e}^{(-0.32x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !