There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{350x}{(1 + 50x + 350{x}^{2} + 2485{x}^{3})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{350x}{(50x + 350x^{2} + 2485x^{3} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{350x}{(50x + 350x^{2} + 2485x^{3} + 1)}\right)}{dx}\\=&350(\frac{-(50 + 350*2x + 2485*3x^{2} + 0)}{(50x + 350x^{2} + 2485x^{3} + 1)^{2}})x + \frac{350}{(50x + 350x^{2} + 2485x^{3} + 1)}\\=& - \frac{245000x^{2}}{(50x + 350x^{2} + 2485x^{3} + 1)^{2}} - \frac{2609250x^{3}}{(50x + 350x^{2} + 2485x^{3} + 1)^{2}} - \frac{17500x}{(50x + 350x^{2} + 2485x^{3} + 1)^{2}} + \frac{350}{(50x + 350x^{2} + 2485x^{3} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !