There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ 0.0112{x}^{4} - 0.0829{x}^{3} - 1.8692{x}^{2} + 15.111x + 63.974\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.0112x^{4} - 0.0829x^{3} - 1.8692x^{2} + 15.111x + 63.974\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.0112x^{4} - 0.0829x^{3} - 1.8692x^{2} + 15.111x + 63.974\right)}{dx}\\=&0.0112*4x^{3} - 0.0829*3x^{2} - 1.8692*2x + 15.111 + 0\\=&0.0448x^{3} - 0.2487x^{2} - 3.7384x + 15.111\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0.0448x^{3} - 0.2487x^{2} - 3.7384x + 15.111\right)}{dx}\\=&0.0448*3x^{2} - 0.2487*2x - 3.7384 + 0\\=&0.1344x^{2} - 0.4974x - 3.7384\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0.1344x^{2} - 0.4974x - 3.7384\right)}{dx}\\=&0.1344*2x - 0.4974 + 0\\=&0.2688x - 0.4974\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0.2688x - 0.4974\right)}{dx}\\=&0.2688 + 0\\=&0.2688\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !