There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{(1 - csc(x))}{(1 + csc(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{csc(x)}{(csc(x) + 1)} + \frac{1}{(csc(x) + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{csc(x)}{(csc(x) + 1)} + \frac{1}{(csc(x) + 1)}\right)}{dx}\\=& - (\frac{-(-csc(x)cot(x) + 0)}{(csc(x) + 1)^{2}})csc(x) - \frac{-csc(x)cot(x)}{(csc(x) + 1)} + (\frac{-(-csc(x)cot(x) + 0)}{(csc(x) + 1)^{2}})\\=& - \frac{cot(x)csc^{2}(x)}{(csc(x) + 1)^{2}} + \frac{cot(x)csc(x)}{(csc(x) + 1)} + \frac{cot(x)csc(x)}{(csc(x) + 1)^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{cot(x)csc^{2}(x)}{(csc(x) + 1)^{2}} + \frac{cot(x)csc(x)}{(csc(x) + 1)} + \frac{cot(x)csc(x)}{(csc(x) + 1)^{2}}\right)}{dx}\\=& - (\frac{-2(-csc(x)cot(x) + 0)}{(csc(x) + 1)^{3}})cot(x)csc^{2}(x) - \frac{-csc^{2}(x)csc^{2}(x)}{(csc(x) + 1)^{2}} - \frac{cot(x)*-2csc^{2}(x)cot(x)}{(csc(x) + 1)^{2}} + (\frac{-(-csc(x)cot(x) + 0)}{(csc(x) + 1)^{2}})cot(x)csc(x) + \frac{-csc^{2}(x)csc(x)}{(csc(x) + 1)} + \frac{cot(x)*-csc(x)cot(x)}{(csc(x) + 1)} + (\frac{-2(-csc(x)cot(x) + 0)}{(csc(x) + 1)^{3}})cot(x)csc(x) + \frac{-csc^{2}(x)csc(x)}{(csc(x) + 1)^{2}} + \frac{cot(x)*-csc(x)cot(x)}{(csc(x) + 1)^{2}}\\=& - \frac{2cot^{2}(x)csc^{3}(x)}{(csc(x) + 1)^{3}} + \frac{csc^{4}(x)}{(csc(x) + 1)^{2}} + \frac{3cot^{2}(x)csc^{2}(x)}{(csc(x) + 1)^{2}} - \frac{csc^{3}(x)}{(csc(x) + 1)} - \frac{cot^{2}(x)csc(x)}{(csc(x) + 1)} + \frac{2cot^{2}(x)csc^{2}(x)}{(csc(x) + 1)^{3}} - \frac{csc^{3}(x)}{(csc(x) + 1)^{2}} - \frac{cot^{2}(x)csc(x)}{(csc(x) + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !