Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ 0.0058{x}^{4} + 0.12{x}^{3} - 4.1197{x}^{2} + 23.703x + 53.169\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.0058x^{4} + 0.12x^{3} - 4.1197x^{2} + 23.703x + 53.169\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.0058x^{4} + 0.12x^{3} - 4.1197x^{2} + 23.703x + 53.169\right)}{dx}\\=&0.0058*4x^{3} + 0.12*3x^{2} - 4.1197*2x + 23.703 + 0\\=&0.0232x^{3} + 0.36x^{2} - 8.2394x + 23.703\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0.0232x^{3} + 0.36x^{2} - 8.2394x + 23.703\right)}{dx}\\=&0.0232*3x^{2} + 0.36*2x - 8.2394 + 0\\=&0.0696x^{2} + 0.72x - 8.2394\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0.0696x^{2} + 0.72x - 8.2394\right)}{dx}\\=&0.0696*2x + 0.72 + 0\\=&0.1392x + 0.72\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0.1392x + 0.72\right)}{dx}\\=&0.1392 + 0\\=&0.1392\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return