Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ 0.0323{x}^{4} - 0.5292{x}^{3} + 1.2988{x}^{2} + 5.63x + 58.164\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.0323x^{4} - 0.5292x^{3} + 1.2988x^{2} + 5.63x + 58.164\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.0323x^{4} - 0.5292x^{3} + 1.2988x^{2} + 5.63x + 58.164\right)}{dx}\\=&0.0323*4x^{3} - 0.5292*3x^{2} + 1.2988*2x + 5.63 + 0\\=&0.1292x^{3} - 1.5876x^{2} + 2.5976x + 5.63\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0.1292x^{3} - 1.5876x^{2} + 2.5976x + 5.63\right)}{dx}\\=&0.1292*3x^{2} - 1.5876*2x + 2.5976 + 0\\=&0.3876x^{2} - 3.1752x + 2.5976\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0.3876x^{2} - 3.1752x + 2.5976\right)}{dx}\\=&0.3876*2x - 3.1752 + 0\\=&0.7752x - 3.1752\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0.7752x - 3.1752\right)}{dx}\\=&0.7752 + 0\\=&0.7752\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return