Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ 0.0323{x}^{40.5292}{x}^{3} + 1.2988{x}^{2} + 5.63x + 58.164\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.0323x^{\frac{108823}{2500}} + 1.2988x^{2} + 5.63x + 58.164\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.0323x^{\frac{108823}{2500}} + 1.2988x^{2} + 5.63x + 58.164\right)}{dx}\\=&0.0323*43.5292x^{\frac{106323}{2500}} + 1.2988*2x + 5.63 + 0\\=&1.40599316x^{\frac{106323}{2500}} + 2.5976x + 5.63\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 1.40599316x^{\frac{106323}{2500}} + 2.5976x + 5.63\right)}{dx}\\=&1.40599316*42.5292x^{\frac{103823}{2500}} + 2.5976 + 0\\=&59.795764300272x^{\frac{103823}{2500}} + 2.5976\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 59.795764300272x^{\frac{103823}{2500}} + 2.5976\right)}{dx}\\=&59.795764300272*41.5292x^{\frac{101323}{2500}} + 0\\=&2483.27025477886x^{\frac{101323}{2500}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 2483.27025477886x^{\frac{101323}{2500}}\right)}{dx}\\=&2483.27025477886*40.5292x^{\frac{98823}{2500}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return