There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ -0.0216{x}^{4} + 0.6484{x}^{3} - 6.5831{x}^{2} + 22.366x + 71.742\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -0.0216x^{4} + 0.6484x^{3} - 6.5831x^{2} + 22.366x + 71.742\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -0.0216x^{4} + 0.6484x^{3} - 6.5831x^{2} + 22.366x + 71.742\right)}{dx}\\=&-0.0216*4x^{3} + 0.6484*3x^{2} - 6.5831*2x + 22.366 + 0\\=&-0.0864x^{3} + 1.9452x^{2} - 13.1662x + 22.366\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -0.0864x^{3} + 1.9452x^{2} - 13.1662x + 22.366\right)}{dx}\\=&-0.0864*3x^{2} + 1.9452*2x - 13.1662 + 0\\=&-0.2592x^{2} + 3.8904x - 13.1662\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -0.2592x^{2} + 3.8904x - 13.1662\right)}{dx}\\=&-0.2592*2x + 3.8904 + 0\\=&-0.5184x + 3.8904\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( -0.5184x + 3.8904\right)}{dx}\\=&-0.5184 + 0\\=&-0.5184\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !