There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ 0.0326{x}^{4} - 0.6164{x}^{3} + 2.5101{x}^{2} + 1.0236x + 78.506\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.0326x^{4} - 0.6164x^{3} + 2.5101x^{2} + 1.0236x + 78.506\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.0326x^{4} - 0.6164x^{3} + 2.5101x^{2} + 1.0236x + 78.506\right)}{dx}\\=&0.0326*4x^{3} - 0.6164*3x^{2} + 2.5101*2x + 1.0236 + 0\\=&0.1304x^{3} - 1.8492x^{2} + 5.0202x + 1.0236\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0.1304x^{3} - 1.8492x^{2} + 5.0202x + 1.0236\right)}{dx}\\=&0.1304*3x^{2} - 1.8492*2x + 5.0202 + 0\\=&0.3912x^{2} - 3.6984x + 5.0202\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0.3912x^{2} - 3.6984x + 5.0202\right)}{dx}\\=&0.3912*2x - 3.6984 + 0\\=&0.7824x - 3.6984\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0.7824x - 3.6984\right)}{dx}\\=&0.7824 + 0\\=&0.7824\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !