There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ 0.233{x}^{4} - 0.3347{x}^{3} - 0.2025{x}^{2} + 10.832x + 66.6\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.233x^{4} - 0.3347x^{3} - 0.2025x^{2} + 10.832x + 66.6\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.233x^{4} - 0.3347x^{3} - 0.2025x^{2} + 10.832x + 66.6\right)}{dx}\\=&0.233*4x^{3} - 0.3347*3x^{2} - 0.2025*2x + 10.832 + 0\\=&0.932x^{3} - 1.0041x^{2} - 0.405x + 10.832\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0.932x^{3} - 1.0041x^{2} - 0.405x + 10.832\right)}{dx}\\=&0.932*3x^{2} - 1.0041*2x - 0.405 + 0\\=&2.796x^{2} - 2.0082x - 0.405\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 2.796x^{2} - 2.0082x - 0.405\right)}{dx}\\=&2.796*2x - 2.0082 + 0\\=&5.592x - 2.0082\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 5.592x - 2.0082\right)}{dx}\\=&5.592 + 0\\=&5.592\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !