There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ 0.0399{x}^{4} - 0.7092{x}^{3} + 2.3162{x}^{2} + 3.1774x + 71.029\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.0399x^{4} - 0.7092x^{3} + 2.3162x^{2} + 3.1774x + 71.029\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.0399x^{4} - 0.7092x^{3} + 2.3162x^{2} + 3.1774x + 71.029\right)}{dx}\\=&0.0399*4x^{3} - 0.7092*3x^{2} + 2.3162*2x + 3.1774 + 0\\=&0.1596x^{3} - 2.1276x^{2} + 4.6324x + 3.1774\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0.1596x^{3} - 2.1276x^{2} + 4.6324x + 3.1774\right)}{dx}\\=&0.1596*3x^{2} - 2.1276*2x + 4.6324 + 0\\=&0.4788x^{2} - 4.2552x + 4.6324\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0.4788x^{2} - 4.2552x + 4.6324\right)}{dx}\\=&0.4788*2x - 4.2552 + 0\\=&0.9576x - 4.2552\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0.9576x - 4.2552\right)}{dx}\\=&0.9576 + 0\\=&0.9576\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !