There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ 0.0497{x}^{4} - 1.0344{x}^{3} + 5.72{x}^{2} - 4.6745x + 60.126\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.0497x^{4} - 1.0344x^{3} + 5.72x^{2} - 4.6745x + 60.126\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.0497x^{4} - 1.0344x^{3} + 5.72x^{2} - 4.6745x + 60.126\right)}{dx}\\=&0.0497*4x^{3} - 1.0344*3x^{2} + 5.72*2x - 4.6745 + 0\\=&0.1988x^{3} - 3.1032x^{2} + 11.44x - 4.6745\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0.1988x^{3} - 3.1032x^{2} + 11.44x - 4.6745\right)}{dx}\\=&0.1988*3x^{2} - 3.1032*2x + 11.44 + 0\\=&0.5964x^{2} - 6.2064x + 11.44\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0.5964x^{2} - 6.2064x + 11.44\right)}{dx}\\=&0.5964*2x - 6.2064 + 0\\=&1.1928x - 6.2064\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 1.1928x - 6.2064\right)}{dx}\\=&1.1928 + 0\\=&1.1928\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !