There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ 0.0258{x}^{4} + 0.3598{x}^{3} - 0.1606{x}^{2} + 10.425x + 53.16\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.0258x^{4} + 0.3598x^{3} - 0.1606x^{2} + 10.425x + 53.16\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.0258x^{4} + 0.3598x^{3} - 0.1606x^{2} + 10.425x + 53.16\right)}{dx}\\=&0.0258*4x^{3} + 0.3598*3x^{2} - 0.1606*2x + 10.425 + 0\\=&0.1032x^{3} + 1.0794x^{2} - 0.3212x + 10.425\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0.1032x^{3} + 1.0794x^{2} - 0.3212x + 10.425\right)}{dx}\\=&0.1032*3x^{2} + 1.0794*2x - 0.3212 + 0\\=&0.3096x^{2} + 2.1588x - 0.3212\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0.3096x^{2} + 2.1588x - 0.3212\right)}{dx}\\=&0.3096*2x + 2.1588 + 0\\=&0.6192x + 2.1588\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0.6192x + 2.1588\right)}{dx}\\=&0.6192 + 0\\=&0.6192\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !