There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ -0.0196{x}^{4} + 0.639{x}^{3} - 6.335{x}^{2} + 19.142x + 53.16\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -0.0196x^{4} + 0.639x^{3} - 6.335x^{2} + 19.142x + 53.16\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -0.0196x^{4} + 0.639x^{3} - 6.335x^{2} + 19.142x + 53.16\right)}{dx}\\=&-0.0196*4x^{3} + 0.639*3x^{2} - 6.335*2x + 19.142 + 0\\=&-0.0784x^{3} + 1.917x^{2} - 12.67x + 19.142\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -0.0784x^{3} + 1.917x^{2} - 12.67x + 19.142\right)}{dx}\\=&-0.0784*3x^{2} + 1.917*2x - 12.67 + 0\\=&-0.2352x^{2} + 3.834x - 12.67\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -0.2352x^{2} + 3.834x - 12.67\right)}{dx}\\=&-0.2352*2x + 3.834 + 0\\=&-0.4704x + 3.834\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( -0.4704x + 3.834\right)}{dx}\\=&-0.4704 + 0\\=&-0.4704\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !