There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (n + 1){(\frac{10}{11})}^{n}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = n{\frac{10}{11}}^{n} + {\frac{10}{11}}^{n}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( n{\frac{10}{11}}^{n} + {\frac{10}{11}}^{n}\right)}{dx}\\=&n({\frac{10}{11}}^{n}((0)ln(\frac{10}{11}) + \frac{(n)(0)}{(\frac{10}{11})})) + ({\frac{10}{11}}^{n}((0)ln(\frac{10}{11}) + \frac{(n)(0)}{(\frac{10}{11})}))\\=&\frac{0}{10}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !