There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ In(1 + {x}^{2}) + \frac{1}{(1 + {x}^{2})} - 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = Inx^{2} + In + \frac{1}{(x^{2} + 1)} - 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( Inx^{2} + In + \frac{1}{(x^{2} + 1)} - 1\right)}{dx}\\=&In*2x + 0 + (\frac{-(2x + 0)}{(x^{2} + 1)^{2}}) + 0\\=&2Inx - \frac{2x}{(x^{2} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !