There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(0.03x + 3)}{(0.00000146{x}^{2} - 0.00349x + 4.13)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{0.03x}{(0.00000146x - 0.00349x + 4.13)} + \frac{3}{(0.00000146x - 0.00349x + 4.13)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{0.03x}{(0.00000146x - 0.00349x + 4.13)} + \frac{3}{(0.00000146x - 0.00349x + 4.13)}\right)}{dx}\\=&0.03(\frac{-(0.00000146 - 0.00349 + 0)}{(0.00000146x - 0.00349x + 4.13)^{2}})x + \frac{0.03}{(0.00000146x - 0.00349x + 4.13)} + 3(\frac{-(0.00000146 - 0.00349 + 0)}{(0.00000146x - 0.00349x + 4.13)^{2}})\\=&\frac{0.0001046562x}{(0.00000146x - 0.00349x + 4.13)(0.00000146x - 0.00349x + 4.13)} + \frac{0.01046562}{(0.00000146x - 0.00349x + 4.13)(0.00000146x - 0.00349x + 4.13)} + \frac{0.03}{(0.00000146x - 0.00349x + 4.13)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !