There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{3} + x + \frac{3}{4} + sqrt(3) + \frac{sqrt({x}^{2} - 1)}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3} + x + sqrt(3) + \frac{1}{2}sqrt(x^{2} - 1) + \frac{3}{4}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3} + x + sqrt(3) + \frac{1}{2}sqrt(x^{2} - 1) + \frac{3}{4}\right)}{dx}\\=&3x^{2} + 1 + 0*\frac{1}{2}*3^{\frac{1}{2}} + \frac{\frac{1}{2}(2x + 0)*\frac{1}{2}}{(x^{2} - 1)^{\frac{1}{2}}} + 0\\=&3x^{2} + \frac{x}{2(x^{2} - 1)^{\frac{1}{2}}} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !