Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 15 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 15th\ derivative\ of\ function\ {e}^{sin(x)}cos(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ \\ &\color{blue}{The\ 15th\ derivative\ of\ function:} \\=&{e}^{sin(x)}cos^{16}(x) - 5364456{e}^{sin(x)}sin(x)cos^{2}(x) + 374659740{e}^{sin(x)}sin(x)cos^{4}(x) + 22368256{e}^{sin(x)}cos^{4}(x) - 128845080{e}^{sin(x)}sin^{2}(x)cos^{2}(x) + 1445223780{e}^{sin(x)}sin^{2}(x)cos^{4}(x) - 583326744{e}^{sin(x)}sin(x)cos^{6}(x) - 121325568{e}^{sin(x)}cos^{6}(x) - 663422760{e}^{sin(x)}sin^{3}(x)cos^{2}(x) + 1953151200{e}^{sin(x)}sin^{3}(x)cos^{4}(x) - 1113512400{e}^{sin(x)}sin^{4}(x)cos^{2}(x) - 821981160{e}^{sin(x)}sin^{2}(x)cos^{6}(x) + 1078377300{e}^{sin(x)}sin^{4}(x)cos^{4}(x) + 107091270{e}^{sin(x)}sin(x)cos^{8}(x) + 50189568{e}^{sin(x)}cos^{8}(x) - 726485760{e}^{sin(x)}sin^{5}(x)cos^{2}(x) - 451531080{e}^{sin(x)}sin^{3}(x)cos^{6}(x) + 245945700{e}^{sin(x)}sin^{5}(x)cos^{4}(x) - 189189000{e}^{sin(x)}sin^{6}(x)cos^{2}(x) + 69999930{e}^{sin(x)}sin^{2}(x)cos^{8}(x) - 100900800{e}^{sin(x)}sin^{4}(x)cos^{6}(x) + 18918900{e}^{sin(x)}sin^{6}(x)cos^{4}(x) - 1321320{e}^{sin(x)}sin^{2}(x)cos^{10}(x) - 4252248{e}^{sin(x)}sin(x)cos^{10}(x) - 3935360{e}^{sin(x)}cos^{10}(x) - 16216200{e}^{sin(x)}sin^{7}(x)cos^{2}(x) + 17117100{e}^{sin(x)}sin^{3}(x)cos^{8}(x) - 7567560{e}^{sin(x)}sin^{5}(x)cos^{6}(x) + 45500{e}^{sin(x)}sin(x)cos^{12}(x) + 5460{e}^{sin(x)}sin^{2}(x)cos^{12}(x) + 84448{e}^{sin(x)}cos^{12}(x) - 120120{e}^{sin(x)}sin^{3}(x)cos^{10}(x) + 1351350{e}^{sin(x)}sin^{4}(x)cos^{8}(x) - 120{e}^{sin(x)}sin(x)cos^{14}(x) + 2027025{e}^{sin(x)}sin^{8}(x) + 18918900{e}^{sin(x)}sin^{7}(x) + 58108050{e}^{sin(x)}sin^{5}(x) - 560{e}^{sin(x)}cos^{14}(x) + 20585565{e}^{sin(x)}sin^{4}(x) + 1777230{e}^{sin(x)}sin^{3}(x) + 54864810{e}^{sin(x)}sin^{6}(x) - 16384{e}^{sin(x)}cos^{2}(x) + 16383{e}^{sin(x)}sin^{2}(x) + {e}^{sin(x)}sin(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return