There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 4{(x + 2)}^{2} + 24ln(2 - x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4x^{2} + 16x + 24ln(-x + 2) + 16\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4x^{2} + 16x + 24ln(-x + 2) + 16\right)}{dx}\\=&4*2x + 16 + \frac{24(-1 + 0)}{(-x + 2)} + 0\\=&8x - \frac{24}{(-x + 2)} + 16\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !