Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{xp}{t})}^{\frac{1}{(1 - x)}}F\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = F(\frac{px}{t})^{\frac{1}{(-x + 1)}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( F(\frac{px}{t})^{\frac{1}{(-x + 1)}}\right)}{dx}\\=&F((\frac{px}{t})^{\frac{1}{(-x + 1)}}(((\frac{-(-1 + 0)}{(-x + 1)^{2}}))ln(\frac{px}{t}) + \frac{(\frac{1}{(-x + 1)})(\frac{p}{t})}{(\frac{px}{t})}))\\=&\frac{F(\frac{px}{t})^{\frac{1}{(-x + 1)}}ln(\frac{px}{t})}{(-x + 1)^{2}} + \frac{F(\frac{px}{t})^{\frac{1}{(-x + 1)}}}{(-x + 1)x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return