There are 1 questions in this calculation: for each question, the 5 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 5th\ derivative\ of\ function\ ln(cos(2)(x) + sin(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(xcos(2) + sin(x))\\\\ &\color{blue}{The\ 5th\ derivative\ of\ function:} \\=&\frac{96cos^{4}(2)cos(x)}{(xcos(2) + sin(x))^{5}} + \frac{96cos^{2}(x)cos^{3}(2)}{(xcos(2) + sin(x))^{5}} + \frac{72sin(x)cos(x)cos^{2}(2)}{(xcos(2) + sin(x))^{4}} + \frac{144cos^{3}(2)cos^{2}(x)}{(xcos(2) + sin(x))^{5}} + \frac{144cos^{3}(x)cos^{2}(2)}{(xcos(2) + sin(x))^{5}} + \frac{108sin(x)cos^{2}(2)cos(x)}{(xcos(2) + sin(x))^{4}} + \frac{126sin(x)cos^{2}(x)cos(2)}{(xcos(2) + sin(x))^{4}} - \frac{32cos^{2}(x)cos(2)}{(xcos(2) + sin(x))^{3}} + \frac{54sin(x)cos(2)cos^{2}(x)}{(xcos(2) + sin(x))^{4}} + \frac{96cos^{2}(2)cos^{3}(x)}{(xcos(2) + sin(x))^{5}} + \frac{96cos^{4}(x)cos(2)}{(xcos(2) + sin(x))^{5}} + \frac{30sin^{2}(x)cos(2)}{(xcos(2) + sin(x))^{3}} + \frac{60sin(x)cos^{3}(2)}{(xcos(2) + sin(x))^{4}} - \frac{12cos(x)cos^{2}(2)}{(xcos(2) + sin(x))^{3}} - \frac{8cos^{2}(2)cos(x)}{(xcos(2) + sin(x))^{3}} - \frac{5sin(x)cos(2)}{(xcos(2) + sin(x))^{2}} + \frac{24cos(2)cos^{4}(x)}{(xcos(2) + sin(x))^{5}} - \frac{8cos(2)cos^{2}(x)}{(xcos(2) + sin(x))^{3}} + \frac{60sin(x)cos^{3}(x)}{(xcos(2) + sin(x))^{4}} + \frac{24cos(x)cos^{4}(2)}{(xcos(2) + sin(x))^{5}} + \frac{30sin^{2}(x)cos(x)}{(xcos(2) + sin(x))^{3}} + \frac{24cos^{5}(x)}{(xcos(2) + sin(x))^{5}} - \frac{15sin(x)cos(x)}{(xcos(2) + sin(x))^{2}} + \frac{24cos^{5}(2)}{(xcos(2) + sin(x))^{5}} - \frac{20cos^{3}(x)}{(xcos(2) + sin(x))^{3}} + \frac{cos(x)}{(xcos(2) + sin(x))}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !