Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({x}^{3}sin(x)){\frac{1}{({e}^{x} - 1 - x)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{3}sin(x)}{({e}^{x} - x - 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{3}sin(x)}{({e}^{x} - x - 1)^{2}}\right)}{dx}\\=&(\frac{-2(({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - 1 + 0)}{({e}^{x} - x - 1)^{3}})x^{3}sin(x) + \frac{3x^{2}sin(x)}{({e}^{x} - x - 1)^{2}} + \frac{x^{3}cos(x)}{({e}^{x} - x - 1)^{2}}\\=&\frac{-2x^{3}{e}^{x}sin(x)}{({e}^{x} - x - 1)^{3}} + \frac{2x^{3}sin(x)}{({e}^{x} - x - 1)^{3}} + \frac{3x^{2}sin(x)}{({e}^{x} - x - 1)^{2}} + \frac{x^{3}cos(x)}{({e}^{x} - x - 1)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return