There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ e^{x}cos(2)x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xe^{x}cos(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xe^{x}cos(2)\right)}{dx}\\=&e^{x}cos(2) + xe^{x}cos(2) + xe^{x}*-sin(2)*0\\=&e^{x}cos(2) + xe^{x}cos(2)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( e^{x}cos(2) + xe^{x}cos(2)\right)}{dx}\\=&e^{x}cos(2) + e^{x}*-sin(2)*0 + e^{x}cos(2) + xe^{x}cos(2) + xe^{x}*-sin(2)*0\\=&2e^{x}cos(2) + xe^{x}cos(2)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !