There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({e}^{(\frac{-(a)}{x})})}{({x}^{n})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(\frac{-a}{x})}{x}^{(-n)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(\frac{-a}{x})}{x}^{(-n)}\right)}{dx}\\=&({e}^{(\frac{-a}{x})}((\frac{-a*-1}{x^{2}})ln(e) + \frac{(\frac{-a}{x})(0)}{(e)})){x}^{(-n)} + {e}^{(\frac{-a}{x})}({x}^{(-n)}((0)ln(x) + \frac{(-n)(1)}{(x)}))\\=&\frac{a{e}^{(\frac{-a}{x})}{x}^{(-n)}}{x^{2}} - \frac{n{x}^{(-n)}{e}^{(\frac{-a}{x})}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !