There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {cos({cos(x)}^{2})}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = cos^{2}(cos^{2}(x))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cos^{2}(cos^{2}(x))\right)}{dx}\\=&-2cos(cos^{2}(x))sin(cos^{2}(x))*-2cos(x)sin(x)\\=&4sin(x)sin(cos^{2}(x))cos(cos^{2}(x))cos(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4sin(x)sin(cos^{2}(x))cos(cos^{2}(x))cos(x)\right)}{dx}\\=&4cos(x)sin(cos^{2}(x))cos(cos^{2}(x))cos(x) + 4sin(x)cos(cos^{2}(x))*-2cos(x)sin(x)cos(cos^{2}(x))cos(x) + 4sin(x)sin(cos^{2}(x))*-sin(cos^{2}(x))*-2cos(x)sin(x)cos(x) + 4sin(x)sin(cos^{2}(x))cos(cos^{2}(x))*-sin(x)\\=&4sin(cos^{2}(x))cos^{2}(x)cos(cos^{2}(x)) - 8sin^{2}(x)cos^{2}(cos^{2}(x))cos^{2}(x) + 8sin^{2}(cos^{2}(x))sin^{2}(x)cos^{2}(x) - 4sin^{2}(x)sin(cos^{2}(x))cos(cos^{2}(x))\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !