There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -{(sin(x))}^{6}tan(1 - x){e}^{(30x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -{e}^{(30x)}sin^{6}(x)tan(-x + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -{e}^{(30x)}sin^{6}(x)tan(-x + 1)\right)}{dx}\\=&-({e}^{(30x)}((30)ln(e) + \frac{(30x)(0)}{(e)}))sin^{6}(x)tan(-x + 1) - {e}^{(30x)}*6sin^{5}(x)cos(x)tan(-x + 1) - {e}^{(30x)}sin^{6}(x)sec^{2}(-x + 1)(-1 + 0)\\=&-30{e}^{(30x)}sin^{6}(x)tan(-x + 1) - 6{e}^{(30x)}sin^{5}(x)cos(x)tan(-x + 1) + {e}^{(30x)}sin^{6}(x)sec^{2}(-x + 1)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !