There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(sqrt({x}^{3} + 8))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(sqrt(x^{3} + 8))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(sqrt(x^{3} + 8))\right)}{dx}\\=&\frac{(3x^{2} + 0)*\frac{1}{2}*\frac{1}{2}}{(x^{3} + 8)^{\frac{1}{2}}(sqrt(x^{3} + 8))^{\frac{1}{2}}}\\=&\frac{3x^{2}}{4(x^{3} + 8)^{\frac{1}{2}}sqrt(x^{3} + 8)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !